
TanGo: A Cost Optimization Framework for Tenant
Task Placement in Geo-distributed Clouds

Luyao Luo1,2 Gongming Zhao1,2 Hongli Xu1,2 Zhuolong Yu3 Liguang Xie4
1School of Computer Science and Technology, University of Science and Technology of China

2Suzhou Institute for Advanced Research, University of Science and Technology of China
3 Johns Hopkins University, USA
4 Futurewei Technologies, USA

Abstract—Cloud infrastructure has gradually displayed a ten-
dency of geographical distribution in order to provide anywhere,
anytime connectivity to tenants all over the world. The tenant
task placement in geo-distributed clouds comes with three critical
and coupled factors: regional diversity in electricity prices, access
delay for tenants, and traffic demand among tasks. However,
existing works disregard either the regional difference in electric-
ity prices or the tenant requirements in geo-distributed clouds,
resulting in increased operating costs or low user QoS. To
bridge the gap, we design a cost optimization framework for
tenant task placement in geo-distributed clouds, called TanGo.
However, it is non-trivial to achieve an optimization framework
while meeting all the tenant requirements. To this end, we first
formulate the electricity cost minimization for task placement
problem as a constrained mixed-integer non-linear programming
problem. We then propose a near-optimal algorithm with a tight
approximation ratio (1 − 1/e) using an effective submodular-
based method. Results of in-depth simulations based on real-
world datasets show the effectiveness of our algorithm as well as
the overall 10%-30% reduction in electricity expenses compared
to commonly-adopted alternatives.

Index Terms—Geo-distributed Cloud, Task Placement, Cost
Effectiveness, Multi Region, Regionless.

I. INTRODUCTION

Deploying enterprise user applications (e.g., Netflix [1], Dis-
ney+ [2]) to a shared and multi-region cloud infrastructure has
become a new norm to meet application requirements includ-
ing latency (e.g., 100-150 ms for video streaming) and data
sovereignty regulation (e.g., European Union GDPR [3]). This
geo-distributed deployment model requires cloud providers
(e.g., AWS [4], Microsoft Azure [5], and Google Cloud [6])
to build a multi-region and massive infrastructure in a global
scale, setting up tens of data centers across the continents,
connecting them in a global backbone network with purpose-
built high bandwidth fibers or rent bandwidth from ISPs. Since
cloud applications are mainly composed of a number of tasks,
this paper focuses on task placement in a geo-distributed cloud.
As illustrated in Fig. 1, cloud provider’s data centers are spread
to multiple regions, offering global coverage and geographical
selections to cloud users, aka tenants, for task placement.

Building hyper-scale cloud data centers near a populated
area is neither eco-friendly nor economy efficient due to
wasted energy during electricity transmission (e.g., low-cost
power supply from the US Midwest to the East Coast, or
from China West to China East). The electricity consumed

Region Tenant Task

Fig. 1: An example of global tenants placing tasks based on
a geographically distributed cloud.

by clouds, correlated to the surging number of servers and the
intensive workloads hosted on each server, has been rising in
a rapid pace and accounting for 60%-70% of overall operating
costs [7]. Therefore, existing cloud deployment model is far
from ideal, calling for an innovative set of design on a more
cost-effective and eco-friendly cloud deployment. As an effort
towards this ambitious goal, our paper aims to answer a
meaningful yet unexplored question: Is it possible to schedule
and place tenant tasks in a cross-region manner so that overall
electricity cost is reduced significantly while meeting desired
tenant/application requirements?

Although implicating a positive impact on our environment,
it is a non-trivial mission to achieve efficient task placement in
a multi-region multi-tenant cloud due to three coupled factors,
namely, regional diversity in electricity prices, access delay for
tenants, and traffic demand among tasks.
• Regional diversity in electricity prices: Relying on the

source of power (e.g., hydroelectric, wind, or natural gas)
and transmission distance from power plants, the unit
price of electricity may vary significantly for data centers
located in distinct regions. For example, the annual aver-
age day-ahead on peak pricing is $32.57/MWh in the US
Northwest compared to $62.71/MWh in New York [20].

• Access delay for tenants refers to round-trip access la-
tency between clients and tenant applications/services
deployed in the cloud. The desired latency is determined
by types of tenant tasks (e.g., time-sensitive versus time-

TABLE I: Comparison of advantages and disadvantages of existing works

Cost-effective solutions Cloud Features Tenant Requirements

Price Diversity Bandwidth Limitation Access Delay Traffic Demand

Intra-region (e.g., [8]–[11]) # # # #

Inter-region Power-aware (e.g., [12]–[16]) # ! partial !

Inter-region Price-aware (e.g., [17]–[19]) ! # partial #

TanGo ! ! ! !

insensitive), and the actual latency varies substantially
based on the geographic distance between clients and
cloud regions [21]–[23].

• Traffic demand among tasks refers to the required de-
lay/bandwidth among multiple tasks of the same tenant.
The desired delay/bandwidth also depends on the type of
tenant tasks, e.g., new computing paradigms like MapRe-
duce [24] and distributed machine learning [25] require
high bandwidth among tasks. If deployed in distinct
locations (e.g., one in the US East and the other in the
US South), a high volume of traffic among tasks may
contradict with the limited bandwidth capacity among
data centers [15].

Given diversities of tenant demands and regional electricity
prices, it requires a fresh look from the community to seek
for a practical, efficient and all-in-one task placement solu-
tion. To our best knowledge, existing works on tenant task
placement often disregard the regional difference of clouds
or the tenant requirements for tasks [12]–[19], resulting in
increased operating costs or low user quality-of-service. For
example, some task placement solutions have been proposed to
minimize the total electricity cost by leveraging the electricity
price difference among multiple regions [17]–[19]. However,
these works ignore various traffic demands between tasks.
When an application imposes a heavy requirement on inter-
task communication (e.g., distributed training), it is preferred
to co-locate tasks in the same region, otherwise task placement
can be more flexible. Overlooking the traffic demands may
result in a higher operating cost.

To conquer these challenges, this paper presents an op-
timization framework, named TanGo, wherein tenants can
specify their various demands over tasks and cloud providers
can place tenant tasks in a cost-effective manner. The core of
TanGo is a near-optimal task placement algorithm that could
minimize the total cost while satisfying all the demands and
constraints. In summary, we make the following contributions:

1) We propose TanGo, a cost optimization framework that
includes a mathematical model of the geo-distributed
task placement problem. TanGo minimizes the overall
electricity cost while meeting all diverse demands.

2) We formulate the task placement problem as a mixed-
integer non-linear optimization problem and give a
submodular-based solution. We prove that our algorithm
is close to optimal and bounded by a tight approximation
factor of (1− 1/e).

3) We conduct extensive experiments based on real-world
regional topology, electricity pricing map, and tenant
datasets including Alibaba Cluster Trace [26] and Google
Cluster Trace [27]. The results show that TanGo can
reduce the electricity cost by up to 10%-30% compared
with existing solutions.

II. BACKGROUND AND MOTIVATION

A. Current Cost-effective Solutions and Limitations

We summarize the advantages and disadvantages of existing
works on reducing the electricity consumption/cost as in
Table I. According to our research, there are primarily three
categories of cost-effective options as follows.
Intra-region: In a single region, some studies consider reduc-
ing the resource consumption by scheduling traffic (e.g., Traf-
ficShaper [9]) or workload (e.g., Workloadcompactor [10]).
Some other studies consider adopting eco-friendly energies
[8, 11] to reduce the overall cost inside a data center or
a region. However, in practice, with the desire for low-cost
computing and always-on connectivity of tenants from all
over the world, cloud providers often cannot restrict the task
distribution on their servers to a particular data center due to
computing power constraints and access delay demands.
Inter-region power-aware: Some previous works [12]–[16]
make efforts to reduce power consumption through multi-
region task placement in a geo-distributed cloud while offering
low access delay to end users [13] or reducing inter-DC traffic
volume [15, 16]. However, the objective of cloud providers like
Azure [5], AWS [4], and others is to lower overall operating
cost, which is based on not only how much power they use,
but also the price of the power source, which varies greatly
in different regions. These works often ignore the regional
differences in resource prices, which may result in increased
operating costs.
Inter-region price-aware: Motivated by the geographical
diversity in electricity prices, some works [17]–[19] focus on
the problem of reducing the electricity cost of data centers
by redirecting user requests to different data centers with
regional electricity price diversity consideration. For example,
the authors in [18] study the task placement problem over geo-
distributed data centers while guaranteeing the user quality-
of-service (i.e., access delay). However, most of these price-
aware works consider tasks to be run independently and
fail to capture the traffic relation between tasks, thus are

(A)

(B)

(D)

(C)

60ms

40ms

30ms

30ms

M11(50ms) M12(40ms)

M22(30ms)

30ms

A(30) B(50) C(40) D(60)

Lowest-Delay-First – M11, M12 – M21, M22 220

Lowest-Cost-First – – M11, M12 M21, M22 200

TanGo M11 M12, M21 M22 – 170

Strategy
Region($/MWh)

Total Cost($)

M21(60ms)
30ms

Fig. 2: An example of three strategies for placing tenant tasks
in different regions. Top left: the access delay demand for each
task and the delay demand among tasks. Top right: the delay
between tenants and regions, and the delay among regions.
Bottom: task placement decisions of each strategy and the
overall cost.

not appropriate for the current large-scale distributed cloud
system.

In practice, there are mainly two strategies of task place-
ment in current public clouds [28]. One is Lowest-Delay-
First (LDF), where tenants select the region with the lowest
access delay to place tasks. The other one is Lowest-Cost-First
(LCF) where cloud providers choose the region with the lowest
electricity price that meets tenants’ access delay demand. For
both strategies, tasks from a tenant tend to be placed in the
same region so as to meet traffic demands.

B. A motivation example

Fig. 2 shows a simple scenario of task placement in a geo-
distributed cloud. In this scenario, there are four regions (A,
B, C, D) and two tenants (T1 and T2). Tenant T1 needs to
place two tasks (M11 and M12) in these regions while tenant
T2 has two other tasks (M21 and M22) to be placed. Fig. 2
also shows the access delay demand for each task and traffic
demand among tasks required by each tenant, as well as the
delay between tenants and regions. For instance, the access
delay between region A and tenants T1, T2 is 60ms, 40ms,
respectively, and the access delay demand of tenant T1 for
tasks M11, M12 is 50ms, 40ms, respectively. Furthermore,
we assume that the electricity consumption of each task is
1MWh for simplicity, and each region can accommodate up
to two tasks. The electricity price in regions A, B, C, and D
is 30, 50, 40, and 60 ($/MWh), respectively, to distinguish the
regional difference in electricity price. We show the placement
decisions of LCF and LDF along with our solutions as follows.
• Lowest-Delay-First Strategy: If we follow this strategy,

then two tasks of tenant T1 should be placed in region B
since it has the lowest access delay (30ms) to tenant T1.
The same is true for tenant T2 to place tasks M21 and
M22 in region D for the lowest access delay (20ms). As

State Collector
Get region state info
and electricity price

Access Delay Demand

 Traffic Demand
Tenant

Regional Topology

Electricity Prices

One Big Region

Placement Optimizer
Task placement

and cost minimization

④ Placement
 decisions

② ③ InputControl Plane

Data Plane

①

① Delay,

bandwidth

Fig. 3: Overview and workflow of TanGo. TanGo is mainly
composed of two parts: the control plane and the data plane.
Specifically, the control plane consists of two components: the
state collector and the placement optimizer. The data plane
consists of data centers located in different regions.

a result, the total cost of these tasks is $220 ($50×2 +
$60×2).

• Lowest-Cost-First Strategy: Since tenant T1 requires a
40ms access delay for task M12, it places tasks M11 and
M12 in region C with the lowest price. As for tenant T2,
it has to select region D due to the access delay demand
for task M22. Then the total cost is $200 for this strategy.

• TanGo: If we place task M11 in region A, M12 and M21

in region B, M22 in region C, the total cost becomes $170
while satisfying all the demands.

This example demonstrates that under the premise of meet-
ing tenant requirements, distributing tasks of a tenant to
different regions can cut more costs than other methods.
In fact, cross-region task placement is becoming a popular
topic. For instance, the East Data West Compute Project
has been launched in China to maximize resource utilization
by transferring the massive data volume generated in China
East to the region in China West with abundant computing
power. Motivated by it, this paper proposes a cost optimization
framework, called TanGo, which aims to reduce the electricity
cost of task placement in geo-distributed clouds while still
satisfying all the tenant requirements.

C. Overview of TanGo

As depicted in Fig. 3, TanGo is composed of two fundamen-
tal parts: the control plane and the data plane. Specifically, the
control plane consists of two components: the state collector
and the placement optimizer. The state collector is responsible
for collecting regional state information (e.g., regional topol-
ogy and electricity price). The cloud providers could utilize
the detailed information along with the tenant requirements to
make optimal placement decisions by the placement optimizer.
Moreover, the data plane consists of data centers located in
different regions. TanGo provides tenants a “One Big Region”

TABLE II: Important Notations
Notations Semantics
R the set of cloud regions
T the set of cloud tenants
I the set of tasks
It the set of tasks of tenant t
ck unit electricity price in region k
τ tk delay between regions k and tenant t
τk,k′ delay between regions k and k′

bk,k′ bandwidth capacity between regions k and k′

rk computing power provided by region k
τk,k′ delay between regions k and k′

τ ti access delay demand for task Iti
τ ti,i′ delay demand between tasks Iti and Iti′
bti,i′ bandwidth demand between tasks Iti and Iti′
rti computing power required by tasks Iti

xti,k
whether task Iti will be placed
in region k or not

abstraction of the data plane, wherein the tenant can specify
their various requirements over all or a subset of tasks without
specifying the placement locations.

Fig. 2 briefly describes the workflow of TanGo. 1© To make
optimal placement decisions, the state collector first collects
the regional information, including the regional topology,
current electricity prices and the delay/bandwidth between any
pair of regions. 2© Considering some information may vary
over time, the state collector works on a periodical basis. For
example, in regions with wholesale power markets, the state
collector updates electricity prices hourly or every 15 minutes
[29]. 3© Once TanGo obtains tenant inputs, the placement
optimizer outputs the mapping of tasks to regions. 4© Based
on the output, TanGo places tasks in the clouds. We describe
how to achieve cost minimization in detail in Section III.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

A. Problem Formulation

Network Model. A typical geo-distributed cloud is segregated
into different regions from a global standpoint, providing ten-
ants with geographical selections for task placement. Specifi-
cally, we useR = {k1, . . . , kK} to represent the set of regions,
where K = |R| is the number of regions. The set of tenants in
the cloud is denoted as T ={t1, . . . , t|T |}. As tenants deploy
different kinds of tasks in clouds, we use I to denote the set
of tasks and It = {It1, . . . , It|It|} to denote the set of tasks of
tenant t.
Inputs and Outputs. As stated in Section II-C, we obtain
inputs from two aspects. 1) First, the cloud provider collects
regional information by state collector periodically. This in-
formation consists of the electricity price in each region and
the delay/bandwidth among regions. We use τk,k′ and bk,k′ to
represent the delay and bandwidth between regions k and k′,
respectively. The delay and bandwidth among regions can be
measured by the state-of-the-art techniques [30, 31]. We also

use rk to denote the computing power provided by region
k, which can be measured by the number of CPU cores.
2) Second, each tenant specifies its requirements on tasks,
including the access delay demand and traffic demand among
tasks. We take these requirements as inputs of our algorithm.
Specifically, constant τi,t represents the access delay demand
between tenant t and task Iti . τ ti,i′ denotes the delay demand
between tasks Iti and Iti′ (e.g., 100 ms for online conferencing
[32]). bti,i′ denotes the bandwidth demands between tasks Iti
and Iti′ . The key step of CTP is to determine in which regions
a tenant’s tasks will be placed. We use binary variable xti,k to
denote whether the task Iti will be placed in region k or not.
Constraints. A cost optimization framework for tenant task
placement should satisfy the following constraints:

1) Task Placement Constraint: Task Iti from tenant t should
be placed in one and only one region. That is,

∑
k x

t
i,k =

1,∀Iti ∈ It, t ∈ T .
2) Access Delay Constraint: Since tenants require different

access delays to their tasks, each task can only be placed
in regions close enough to the tenant. It follows xti,kτ

t
k ≤

τ ti ,∀Iti ∈ It, t ∈ T , k ∈ R.
3) Traffic Delay Constraint: The communication delay be-

tween any pair of tasks from a tenant should not exceed
the traffic delay demand posed by the tenant. It means
xti,kx

t
i′,k′τk,k′ ≤ τ ti,i′ ,∀Iti , Iti′ ∈ It, t ∈ T , k, k′ ∈ R.

4) Region Bandwidth Constraint: The total traffic be-
tween any pair of regions (k, k′) should not ex-
ceed the bandwidth capacity constraints bk,k′ , i.e.,∑

t

∑
i,i′ x

t
i,kx

t
i′,k′bti,i′ ≤ bk,k′ ,∀k, k′ ∈ R.

5) Computing Power Constraint: The placement of a task
occupies the computing power of the corresponding re-
gion. The computing power capacity constraint of each
region k should be satisfied. That is,

∑
t

∑
i x

t
i,kr

t
i ≤

rk,∀k ∈ R.
Objective. Our objective is to minimize the total electricity
cost on the premise of meeting tenant requirements, regional
computing power and bandwidth limitations. We give the
following problem formulation:

min
∑
k

Ek

S.t

∑
k x

t
i,k = 1, ∀i, t

xti,kτ
t
k ≤ τ ti , ∀i, t, k

xti,kx
t
i′,k′τk,k′ ≤ τ ti,i′ , ∀(i, i′), t, (k, k′)∑

t

∑
i,i′ x

t
i,kx

t
i′,k′bti,i′ ≤ bk,k′ ∀(k, k′)∑

t

∑
i x

t
i,kr

t
i ≤ rk, ∀k

Ek =
∑

i

∑
t x

t
i,kr

t
ick, ∀k

xti,k ∈ {0, 1} ∀i, t, k

(1)

The first set of equations indicates the task placement
constraint. The second to the fifth sets of inequalities denotes
the access delay constraint, traffic delay constraint, region
bandwidth constraint, and computing power constraint, respec-
tively. The sixth set of equations calculates the total electricity
cost Ek of each region k. Our objective is to minimize the total
electricity cost of all regions, that is,

∑
k Ek.

The optimization formulation of task placement with various
constraints in Eq. (1) results in a complex mixed integer
non-linear programming problem that is computationally hard.
Despite using a state-of-the-art LP solver (e.g., Gurobi [33]),
it still needs the order of hours to solve even for relatively
small scales (e.g., 1000 tasks) [34]. Thus, how to design an
efficient algorithm for CTP is challenging.

B. Algorithm Design

1) Preliminaries: In general, we need to place the tasks in
K = |R| regions while meeting the tenant requirements, i.e.,
the access delay and traffic demand among tasks. After placing
tasks in K regions, these tasks is certainly divided into K sets,
denoted as {I1, I2, ..., IK}, where tasks in Ik are placed in
region k. Then the total electricity cost of all tasks is expressed
as

∑
k∈K C(Ik), where C(Ik) =

∑
It
i∈Ik

ckr
t
i , ck is the unit

electricity price in region k and rti is the computing power
required by task Iti . We know that the total electricity cost of
all tasks will not exceed Cmax =

∑
t∈T

∑
i∈It cmaxr

t
i , where

cmax = max
k

ck is the maximum unit electricity price among
these regions. That means the minimization problem in Eq. (1)
can be converted into the following equivalent maximization
problem in Eq. (2), where Cmax −

∑
k∈K C(Ik) means the

total cost reduction.

maxCmax −
∑
k∈K

C(Ik)

S.t

∑
k x

t
i,k = 1, ∀i, t

xti,kτ
t
k ≤ τ ti , ∀i, t, k

xti,kx
t
i′,k′τk,k′ ≤ τ ti,i′ , ∀(i, i′), t, (k, k′)∑

t

∑
i,i′ x

t
i,kx

t
i′,k′bti,i′ ≤ bk,k′ ∀(k, k′)∑

t

∑
i x

t
i,kr

t
i ≤ rk, ∀k

xti,k ∈ {0, 1} ∀i, t, k

(2)

Obviously, the optimal solution to Eq. (2) is also the optimal
solution to Eq. (1). The problem formulation in Eq. (2) is
similar to a clustering problem, where we need to divide the
task set I into K clusters so as to maximize the electricity
cost reduction of all tasks. However, the selectable regions for
each task are restricted due to the various demands for access
delay with the tenant and traffic with other tasks. We call these
regions as available regions for tasks and give the definition
of the available region set as follows:

Definition 1 Given a task Iti from tenant t, a subset A(Iti)
of R is defined as available region set for task Iti if τ tk ≤ τ ti
and τk,k′ ≤ τ ti,i′ for all k ∈ A(Iti) and Iti′ in k′ for all
k′ ∈ R−A(Iti).

To start, we use the access delay demand to ascertain whether
the region is available or not. After we determine the place-
ment location for a task, we update the available set of each
task based on the traffic demand among tasks.
Submodular function. Our algorithm is based on efficient
computations of a submodular set function H , which defines
the maximum cost reduction by dividing the tasks into several
sets. Without loss of generality, we consider that the unit price

of the regions is sorted in ascending order. That is, c1 ≤ c2 ≤
· · · ≤ cK . We then give the definition of the submodular set
function H as follows.

Definition 2 Given the set Φ, which contains disjoint subsets
of I, the reduction of cost achieved by dividing the tasks
according to Φ is defined as:

H(Φ) = Cmax −
∑

Φn∈Φ

∑
It
i∈Φn

cknr
t
i (3)

Where kn is the region with the lowest electricity price that
can accommodate all tasks in Φn. It is determined in Alg. 1.

Next, we give the definition of submodularity and prove that
the function H is submodular in Section III-B3.

Definition 3 (Submodularity [35]): Given a finite set E, a
real-valued function z on the set of subsets of E is called
submodular if z(S ∪ {e}) − z(S) ≤ z(S′ ∪ {e}) − z(S′) for
all S′ ⊆ S ⊆ E and e ∈ E − S.

To maintain the computing power and bandwidth constraints
of the region k, we only focus on the task set B ⊂ I without
breaking the constraints. That is,{∑

It
i∈B

rti ≤ rk∑
It
i∈B

∑
It
i′∈k

′ bti,i′ ≤ bk,k′ ,∀k′ ∈ R
(4)

We call the task sets satisfying Eq. (4) as feasible task sets
for region k. The feasible sets can be explored efficiently by
simply performing a depth-first search [36] on tasks to which
region k is available through the available region sets. During
each iteration of the depth-first search, we gradually expand
the candidate feasible task set by adding untraversed tasks
and simultaneously update the leftover computing power and
bandwidth between other regions.

2) Algorithm Description: Given these insights, we pro-
pose the submodular-based algorithm (SM-CTP) for the CTP
problem in detail, which is formally described in Alg. 1. SM-
CTP consists of three steps. In the first step, the algorithm
computes the available region set for each task, and feasible
task sets for each region in advance (Line 2), and starts with
an empty set Φ (Line 3). In the second step (Lines 5-14), it
loops through the possible feasible task set S for each region
to find the maximum function value max

S
H(Φ ∪ {S}) (Lines

5-11). At the end of each iteration, we add the feasible task
set S with the maximum submodular function value into Φ
(Line 12). After that, we update the available region set for
each task and the feasible task sets for each region based on
the updated available region sets (Lines 13-14). The algorithm
performs K − 1 iterations until we obtain K sets of tasks in
Φ. In the third step (Lines 16-18), we obtain the mapping
relationship between tasks and regions (i.e., xti,k).

3) Performance Analysis: We analyze the approximation
performance of our proposed algorithm based on the following
lemmas.

Lemma 1 Given the set U as the power set of I, the function
H defined in Eq. (3) is submodular on U .

Proof: Without loss of generality, we consider an arbitrary

Algorithm 1 SM-CTP: Submodular-based Algorithm for CTP
1: Step 1: Initialization
2: Compute the available region set for each task, and the

set of feasible task sets Bk for each region k
3: Φ← ∅
4: Step 2: Iterative Selection
5: while |Φ| ≤ K − 1 do
6: Set tmp← 0, opt← 0
7: for k ∈ R do
8: for S ∈ Bk − Φ do
9: tmp← H(Φ ∪ {S})

10: if tmp > opt then
11: opt← tmp, S∗ ← S
12: Φ← Φ + {S∗}
13: Update available region sets and feasible task sets
14: Update the feasible task sets based on the updated

available region sets
15: Φ← Φ + {I −

⋃
S∈Φ S}

16: Step 3: Assignment of tasks and regions
17: for S ∈ Φ do
18: Set xki,t = 1 if Iti ∈ S if S is taken out from Bk

set Φ ⊆ U and an arbitrary set M ⊆ I. Assume that M does
not intersect with other sets in Φ, i.e., M ∩ S = ∅,∀S ∈ Φ.
Then, we have

H(Φ ∪ {M})−H(Φ) =
∑

It
i∈M

(cmax − ckm
)rti (5)

where km is the region with the lowest electricity price that
can accommodate all tasks in M after placing tasks in Φ.
That is, km is an available region for all tasks in M , and M
is a feasible task set for region km. Given an arbitrary subset
Φ′ ⊆ Φ, it also follows

H(Φ′ ∪ {M})−H(Φ′) =
∑

It
i∈M

(cmax − ck′
m

)rti (6)

where k′m is the region with the lowest electricity price that
can accommodate all tasks in M after placing tasks in Φ′.

Note that two situations may happen: 1) The task sets in
Φ−Φ′ do not affect the placement results of tasks in M . That
is to say, after placing the tasks in Φ− Φ′, region k′m is still
able to accommodate all tasks in M . In this situation, tasks
in M will be placed in the same region k′m, i.e., ckm = ck′

m
.

2) If region k′m cannot accommodate all tasks in M after
placing the tasks inside Φ−Φ′, tasks in M should be placed
in another available region km. In this situation, we know that
ckm

> ck′
m

. As a result, in any situation, we have
ckm ≥ ck′

m
(7)

From Eq. (7), we can get:∑
It
i∈M

(cmax − ckm
)rti ≤

∑
It
i∈M

(cmax − ck′
m

)rti (8)

Combining Eqs. (5), (6) and (8), we know that:
H(Φ ∪ {M})−H(Φ) ≤ H(Φ′ ∪ {M})−H(Φ′) (9)

According to Definition 3, we show that the set function H is
submodular.

Lemma 2 For a real-valued submodular and non-
decreasing function z(S) on U , the optimization problem

maxS⊆U{z(S) : |S| ≤ K, z(S) is submodular} can reach
a (1 − 1/e) approximation factor if the algorithm performs
greedily [35].

Theorem 3 Our SM-CTP algorithm achieves a (1−1/e) ap-
proximation factor for the maximization problem as formulated
in Eq. (2).

Proof: We have proved that the function H is submodular
in Lemma 1. Besides, for any set Φ containing subsets of I
and M ⊆ I with M ∩ S = ∅,∀S ∈ Φ, it follows:

H(Φ ∪ {M})−H(Φ) ≥ 0 (10)
since cmax is the maximum unit electricity price among
regions. The equal sign is held only in the case where km
is the region with the highest price. Thus, the function H
is non-decreasing. By applying Lemma 2, we prove that our
proposed algorithm can reach a (1−1/e) approximation factor
for the CTP problem in Eq. (2).

In fact, Nemhauser [37] has proved that any algorithm
evaluating the submodular function at a polynomial number
of sets will not be able to obtain an approximation guarantee
better than (1− 1/e), unless NP = P . Thus, we have:

Theorem 4 The maximization problem in Eq. (2) does not
admit a polynomial-time algorithm with approximation ratio
1− 1/e+ ε unless NP = P , where ε is an arbitrary positive
constant.

We should note that the number of feasible sets for each
region may be exponential. However, the work [38] has shown
that a polynomial number of feasible sets are enough for per-
formance optimization. To achieve the trade-off optimization
between algorithm complexity and network performance, we
only construct the polynomial number (with input the number
of tasks |I|) of feasible sets for each region. Under this
condition, the function H is calculated O(K|I|) times in each
iteration and the algorithm runs in K−1 iterations. As a result,
the time complexity of SM-CTP is O(K2|I|).

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks
We evaluate the effectiveness of TanGo through the most

important metric, i.e., the electricity cost, including the hourly
cost and the average hourly cost. The hourly cost is the
electricity price multiplied by the total electricity consumption
of all regions in an hour. The average hourly cost is calculated
over the entire period. Moreover, we compared TanGo with the
following three practical benchmarks.

1) The first one, called Lowest-Delay-First (LDF), places all
tasks of a tenant in the same region. LDF simulates the
preference behavior of tenants in the cloud and selects the
region with the lowest access delay to place tasks [39].

2) The second one, called Lowest-Cost-First (LCF), also
places tasks of the same tenant in the same region, which
mimics the preference decision-making process of cloud
providers such as Google [27]. Specifically, it chooses the
region with the lowest electricity price that meets tenants’
access delay demand.

Fig. 4: The U.S. cloud region selection and electricity price
($/MWh) [20].

3) The last one is Cross-Region Lowest-Cost-First (CR-
LCF). Since no existing work fully takes into account
both regional diversity in electricity prices and tenant
requirements in region-wide task placement, to better
illustrate the benefits of our solution, we employ a greedy
cross-region strategy based on LCF for task placement.
Specifically, the CR-LCF strategy places a task in a region
with the lowest prices while satisfying all the tenant
requirements, including the access delay demand and the
traffic demands among tasks. Different from both LDF
and LCF, CR-LCF may place tasks of a tenant in multiple
regions.

B. Simulation Settings

Regional Topology. We assume that the regions are spread
across the continental U.S. in order to account for the ge-
ographic diversity of the cloud infrastructure and electricity
prices as in [19]. For the sake of convenience, we suppose
that each region, as depicted in Fig. 4, has a single data center
in a randomly selected location. We first choose 10 cities as
the precise locations of data centers in the United States. The
tenants access these regions (i.e., data centers) randomly from
another 100 cities. Following the Euclidean distance which is
easy to calculate, we map the transmission latency between
tenants and data centers to the interval of 10ms to 100ms. We
utilize the Federal Energy Regulatory Commission’s annual
average day-ahead on peak pricing ($/MWh) as the electricity
price for each region [20]. For example, the electricity price
in California is $35.83/MWh while that of New York is
$62.71/MWh. The bandwidth between data centers is set to
50Gbps by default [16].
Task Sets. We conduct simulations on two different real-world
task datasets: (a) Alibaba Cluster Trace [26] and (b) Google
Cluster Trace [27]. These two datasets both contain the arrival
time, the requested resources, and the duration of tasks. More
specifically, Alibaba Cluster Trace covers up to 76 thousands
tasks submitted by 12 thousands tenants over 12 hours. We
utilize this dataset to simulate low workload situations, i.e.,

0 2 4 6 8 10
Time (hour)

40

60

80

100

120

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(a) Alibaba Cluster Trace

0 2 4 6 8 10
Time (hour)

500
600
700
800
900

1000
1100
1200

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(b) Google Cluster Trace

Fig. 5: Hourly Cost vs. Time.

when the system is running well below the total capacity it
can handle. Google Cluster Trace covers up to 25 million
tasks submitted by 2 million tenants over 29 days. We use
this dataset to simulate high workload scenarios to study the
performance of TanGo in high load clouds. For fairness, we
select tasks within 12 hours from both datasets. Without loss
of generality, we assume that a server at full load consumes
1 KWh electricity per hour [40].
Tenant Requirements. To demonstrate the efficiency of our
algorithm in various settings, we thoroughly test how the ten-
ant requirements affect both our algorithm and the comparison
algorithms in the experiments. By default, we assume that each
tenant requires an average of 50ms access delay following the
uniform distribution. For the inter-task traffic demands, we
specify 5k task communication pairs from the task datasets,
where the delay and bandwidth demands are also taken from
the uniform distribution with an average bandwidth demand
of 50Mbps and an average delay demand of 50ms.

C. Evaluation Results

Hourly cost over time. To analyze the performance of these
algorithms intuitively, we test the hourly cost over 12 hours
on the two task datasets. The results are shown in Fig. 5.
Specifically, Fig. 5(a) shows that the hourly cost of all methods
varies with a time offset, where LDF has the highest cost while
TanGo achieves the lowest cost all over the time. For example,
at the eighth hour, the hourly cost of TanGo, LCF, LDF,
and CR-LCF is $77.5, $87.7, $104.8, and $83.6, respectively.
It means that TanGo can reduce the overall cost by over
11%, 26%, and 7% compared with LCF, LDF, and CR-LCF,
respectively. This is due to the fact that TanGo provides a more
advantageous placement decision from a global standpoint and
can handle tenant demands and regional resource restrictions
more equitably. We also observe that, despite the fact that both
LCF and CR-LCF favor regions with lower electricity costs,
the cost of CR-LCF will ultimately be less than that of LCF. It
implies that, if the tenant requirements and resource constraints
are satisfied, allowing tasks to be placed across regions will
be more likely to take advantage of regional variances in
electricity prices to minimize expenses. These findings are
likewise true with Google cluster trace as in Fig. 5(b). For
example, at the eighth hour, the hourly cost of TanGo, LCF,
LDF, and CR-LCF is $608, $718, $862, and $697, respectively.

10 20 30 40 50 60 70 80 90 100
Avg. Access Delay Demand (ms)

50

60

70

80

90

100
Av

er
ag

e
Ho

ur
ly

 C
os

t (
$)

LDF
LCF
CR-LCF
TanGo

(a) Alibaba Cluster Trace

10 20 30 40 50 60 70 80 90 100
Avg. Access Delay Demand (ms)

600
650
700
750
800
850
900
950

1000

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(b) Google Cluster Trace

Fig. 6: Average Hourly Cost vs. Average Access Delay De-
mand.

More specifically, TanGo reduces the hourly cost by about
15%, 30%, and 13% compared with LCF, LDF, and CR-LCF.
Moreover, we discover that TanGo can reduce more cost than
other methods in the case of high workload (i.e., with Google
cluster trace). The result suggests that task placement in high
workload scenarios has a greater impact on performance than
that in low workload scenarios. Simple methods (e.g., CR-
LCF) would lead to inefficient usage of computing power or
bandwidth among regions.

To further demonstrate the high applicability of TanGo
under different scenarios, we compare TanGo, LCF, LDF, and
CR-LCF by changing the settings of tenant requirements. The
results are shown in Figs. 6-9, where we change separately
the access delay, the number of communication pairs, and the
traffic delay and bandwidth demands, respectively.
Cost versus access delay demand. Fig. 6 analyzes the impact
of the access delay demand on the average hourly cost. As
the average access delay increases, the average hourly cost
decreases for all methods except LDF. That is because LDF
tends to select the closest region (with the lowest delay) for
each tenant. In comparison, TanGo achieves a lower cost than
the other three methods. For example, given the average access
delay demand as 60ms under low workload (i.e., with Alibaba
cluster trace in Fig. 6(a)), the average hourly cost of TanGo
is $60.1 while that of LCF and CR-LCF are $69.7 and $64.8.
More specifically, TanGo reduces the cost by about 13% and
7% compared with LCF and CR-LCF. This difference is more
pronounced with the Google cluster trace in Fig. 6(b), where
the cost of TanGo, LCF, and CR-LCF are $675, $813, and
$759, respectively. That is to say, TanGo reduces the cost by
about 17% and 11% compared with LCF and CR-LCF.
Cost versus the number of task communication pairs. We
test the average hourly cost by changing the number of com-
munication pairs among tasks. The results are shown in Fig.
7, where the horizontal axis is the number of communication
pairs, ranging from 1k to 10k. With more tasks communication
pairs, the average hourly cost of TanGo and CR-LCF increases
while that of LCF and LDF remains the same, since these
two algorithms do not consider the inter-task traffic and place
all the tasks of a tenant in the same region. For example, as
shown in Fig. 7(a), when the number of task communication
pairs reaches 6k, the average hourly cost of TanGo, LCF, CR-

1 2 3 4 5 6 7 8 9 10
No. of Communication Pairs (x103)

50
55
60
65
70
75
80
85
90

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(a) Alibaba Cluster Trace

1 2 3 4 5 6 7 8 9 10
No. of Communication Pairs (x103)

600
650
700
750
800
850
900
950

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$) LDF
LCF
CR-LCF
TanGo

(b) Google Cluster Trace

Fig. 7: Average Hourly Cost vs. Number of Communication
Pairs.

10 20 30 40 50 60 70 80 90 100
Avg. Delay Demand among Tasks(ms)

40

50

60

70

80

90

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(a) Alibaba Cluster Trace

10 20 30 40 50 60 70 80 90 100
Avg. Delay Demand among Tasks(ms)

600

700

800

900

1000

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(b) Google Cluster Trace

Fig. 8: Average Hourly Cost vs. Avg. Delay Demand among
Tasks.

LCF, and LDF is $58.2, $66.7, $62.6, and $87.7, respectively.
That is, TanGo can reduce the average hourly cost by about
13%, 7%, and 33% compared with LCF, CR-LCF, and LDF,
respectively. As for the Google cluster trace, the average
hourly cost of TanGo, LCF, CR-LCF, and LDF is $703, $818,
$791, and $956, respectively. That means TanGo reduces the
cost by about 15%, 11%, and 26% compared with LCF, CR-
LCF, and LDF.
Cost versus delay demand among tasks. We also test the
average hourly cost by changing the average delay demand
between any two tasks. Fig. 8 shows the average hourly cost
with the average delay demand among tasks increasing from
10ms to 100ms. Note that when the average delay demand is
10ms, the average hourly cost of TanGo and CR-LCF is close
to that of LCF, since the delay between regions is more than
10ms, and we can only place related tasks in the same region.
The average hourly cost of both TanGo and CR-LCF decreases
as the average access delay increases. For example, as shown
in Fig. 8(a), when the average delay demand among tasks
reaches 70ms with Alibaba cluster trace, the average hourly
cost of TanGo, LCF, CR-LCF, and LDF is $54.5, $66.7, $58.8,
and $87.7, while the average hourly cost of TanGo, LCF, CR-
LCF, and LDF is $656, $818, $728, and $956, respectively.
More specifically, TanGo reduces the average hourly cost by
about 25%, 10%, and 31.3% compared with LCF, CR-LCF,
and LDF, respectively.
Cost versus bandwidth demand among tasks. The last
tenant requirement we study is the average bandwidth demand
between any two tasks. The results are shown in Fig. 9,
where the horizontal axis is the average bandwidth demand

10 20 30 40 50 60 70 80 90 100
Avg. Bandwidth Demand (Mbps)

40

50

60

70

80

90
Av

er
ag

e
Ho

ur
ly

 C
os

t (
$)

LDF
LCF
CR-LCF
TanGo

(a) Alibaba Cluster Trace

10 20 30 40 50 60 70 80 90 100
Avg. Bandwidth Demand (Mbps)

500

600

700

800

900

1000

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(b) Google Cluster Trace

Fig. 9: Average Hourly Cost vs. Avg. Bandwidth Demand
among Tasks.

10 20 30 40 50 60 70 80 90 100
Bandwidth between Regions (Gbps)

30
40
50
60
70
80
90

100

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(a) Alibaba Cluster Trace

10 20 30 40 50 60 70 80 90 100
Bandwidth between Regions (Gbps)

500

600

700

800

900

1000

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$)

LDF
LCF
CR-LCF
TanGo

(b) Google Cluster Trace

Fig. 10: Average Hourly Cost vs. Bandwidth between Regions.

between tasks, ranging from 10Mbps to 100Mbps. With the
average bandwidth demand increasing, the average hourly cost
of TanGo and CR-LCF increases while that of LCF and LDF
remains the same. In particular, the average hourly cost rises
significantly when the average bandwidth demand surpasses
40ms. This is because the bandwidth between regions is con-
strained, and bandwidth preemption may occur. For example,
as shown in Fig. 7(b), when the average bandwidth demand
reaches 70Mbps, the average hourly cost of TanGo, LCF, CR-
LCF, and LDF is $681, $817, $755, and $956, respectively.
More specifically, TanGo reduces the average hourly cost by
about 17%, 10%, and 29% compared with LCF, CR-LCF, and
LDF, respectively.

To gain a deeper understanding, we extend the experiments
by changing the bandwidth and the variation in electricity
prices among those regions, as shown in Figs. 10-11.
Cost versus bandwidth between regions. In this set of
experiments, we change the bandwidth among regions, and
the results are shown in Fig. 10. The average hourly cost
of TanGo and CR-LCF decreases as the bandwidth among
regions increases from 10Gbps to 100Gbps. For example,
when the bandwidth among regions achieves 70Gbps, the
average hourly cost of TanGo, LCF, CR-LCF, LDF is $53.7,
$66.8, $58.5, $87.8 with Alibaba cluster trace, and $637, $817,
$706, $956 with Google cluster trace. That means, TanGo
can reduce the average hourly by about 22%, 10%, and 33%
compared with LCF, CR-LCF ,and LDF, respectively.
Cost versus standard deviation of prices. The last set of
experiments tests the average hourly cost by changing the
standard deviation of electricity prices while maintaining a
constant average. The results are shown in Fig. 11, where

5 10 15
Standard Deviation of Electricity Prices ($)

50

60

70

80

90

100

Av
er

ag
e

Ho
ur

ly
 C

os
t (

$) TanGo
LCF

LDF
CR-LCF

(a) Alibaba Cluster Trace

5 10 15
Standard Deviation of Electricity Prices ($)

600

700

800

900

1000

c.
ho

ur
_c

os
t

TanGo
LCF

LDF
CR-LCF

(b) Google Cluster Trace

Fig. 11: Average Hourly Cost vs. Standard Deviation of Prices.

the standard deviation of electricity prices is adjusted to $5,
$10, and $15, respectively. From Figs. 11(a) and 11(b) we
can learn that the average hourly cost gap of each method
gradually widens as the standard deviation of the pricing rises.
For example, when the standard deviation of electricity prices
is $15, the average hourly cost with Alibaba cluster trace of
TanGo, LCF, CR-LCF, and LDF is $51.3, $63, $57.3, and
$86.8, respectively. More specifically, TanGo reduces the cost
by about 18.6%, 10.5%, and 41% compared with LCF, CR-
LCF, and LDF, respectively. The same is true for Google
cluster trace, where the average hourly cost of TanGo, LCF,
CR-LCF, and LDF is $611, $755, $688, and $955, respectively.
That means TanGo reduces the cost by about 19.1%, 11.2%,
and 36% compared with LCF, CR-LCF ,and LDF, respectively.

From these simulation results, we can draw some conclu-
sions. First, as shown in Fig. 5, TanGo can achieve superior
performance in terms of electricity cost compared with the
other three methods. Second, as shown in Figs. 6-9, our
algorithm proves its effectiveness in different scenarios with
various tenant demands and workloads. Third, TanGo performs
well when conditions such as inter-region bandwidth and
electricity prices fluctuate, as shown in Fig. 10-11. Fourth,
compared with LCF and LDF, cross-region task placement
methods like TanGo and CR-LCF can reduce electricity costs
since they can better capitalize on regional differences in
electricity prices. Meanwhile, TanGo is superior to CR- LCF,
particularly in high workload scenarios.

V. CONCLUSION

In this paper, we explore the challenges faced by region-
wide distributed task placement and formulate the electricity
cost minimization problem for task placement in a geo-
distributed cloud. Then we solve this problem with an effec-
tive submodular-based algorithm. Results of in-depth analyses
based on real-world electricity prices and task datasets show
the efficacy of our algorithm compared with other solutions.

ACKNOWLEDGEMENT

The corresponding authors of this paper are Gongming Zhao
and Hongli Xu. This article was supported in part by the
National Science Foundation of China (NSFC) under Grant
62102392, the Hefei Municipal Natural Science Foundation
under Grant No. 2022013 and the National Science Foundation
of Jiangsu Province under Grant BK20210121.

REFERENCES

[1] Netflix streaming service. [Online]. Available: https://www.netflix.com/
[2] Disney+ streaming service. [Online]. Available: https://www.disneyplus.

com/
[3] General data protection regulation (gdpr). [Online]. Available: https:

//gdpr-info.eu/
[4] Amazon web services. [Online]. Available: https://aws.amazon.com/
[5] Microsoft azure. [Online]. Available: https://azure.microsoft.com/en-us/
[6] Google cloud. [Online]. Available: https://cloud.google.com/
[7] Data center white paper from caict. Accessed: July. 20, 2022. [Online].

Available: https://pdf.dfcfw.com/pdf/H3 AP202204241561314215 1.
pdf?1650898389000.pdf

[8] J. Gao, H. Wang, and H. Shen, “Smartly handling renewable energy
instability in supporting a cloud datacenter,” in 2020 IEEE international
parallel and distributed processing symposium (IPDPS). IEEE, 2020,
pp. 769–778.

[9] W. Li, X. Zhou, K. Li, H. Qi, and D. Guo, “Trafficshaper: Shaping
inter-datacenter traffic to reduce the transmission cost,” IEEE/ACM
Transactions on Networking, vol. 26, no. 3, pp. 1193–1206, 2018.

[10] T. Zhu, M. A. Kozuch, and M. Harchol-Balter, “Workloadcompactor:
Reducing datacenter cost while providing tail latency slo guarantees,”
in Proceedings of the 2017 Symposium on Cloud Computing, 2017, pp.
598–610.

[11] W. Deng, F. Liu, H. Jin, C. Wu, and X. Liu, “Multigreen: Cost-
minimizing multi-source datacenter power supply with online control,”
in Proceedings of the fourth international conference on Future energy
systems, 2013, pp. 149–160.

[12] R. Eyckerman, S. Mercelis, J. Marquez-Barja, and P. Hellinckx, “Re-
quirements for distributed task placement in the fog,” Internet of Things,
vol. 12, p. 100237, 2020.

[13] M. H. Hajiesmaili, L. T. Mak, Z. Wang, C. Wu, M. Chen, and
A. Khonsari, “Cost-effective low-delay cloud video conferencing,” in
2015 IEEE 35th International Conference on Distributed Computing
Systems. IEEE, 2015, pp. 103–112.

[14] P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and K. Wang,
“Traffic-aware geo-distributed big data analytics with predictable job
completion time,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 28, no. 6, pp. 1785–1796, 2016.

[15] R. Singh, S. Agarwal, M. Calder, and P. Bahl, “Cost-effective cloud
edge traffic engineering with cascara,” in 18th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 21), 2021, pp.
201–216.

[16] W. Li, K. Li, D. Guo, G. Min, H. Qi, and J. Zhang, “Cost-minimizing
bandwidth guarantee for inter-datacenter traffic,” IEEE Transactions on
Cloud Computing, vol. 7, no. 2, pp. 483–494, 2016.

[17] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in 2010 Proceedings IEEE INFOCOM. IEEE,
2010, pp. 1–9.

[18] L. Gu, D. Zeng, A. Barnawi, S. Guo, and I. Stojmenovic, “Optimal
task placement with qos constraints in geo-distributed data centers using
dvfs,” IEEE Transactions on Computers, vol. 64, no. 7, pp. 2049–2059,
2014.

[19] H. Xu and B. Li, “Cost efficient datacenter selection for cloud services,”
in 2012 1st IEEE International Conference on Communications in China
(ICCC). IEEE, 2012, pp. 51–56.

[20] Federal energy regulatory commission. U.S. electric power markets.
[Online]. Available: http://www.ferc.gov/market-oversight/mkt-electric/
overview.asp

[21] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for {Ultra-Low}

latency in the data center,” in 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), 2012, pp. 253–266.

[22] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proceedings of
the 19th ACM international conference on Multimedia, 2011, pp. 1269–
1272.

[23] Y. Feng, B. Li, and B. Li, “Airlift: Video conferencing as a cloud ser-
vice using inter-datacenter networks,” in 2012 20th IEEE International
Conference on Network Protocols (ICNP). IEEE, 2012, pp. 1–11.

[24] D. Dahiphale, R. Karve, A. V. Vasilakos, H. Liu, Z. Yu, A. Chhajer,
J. Wang, and C. Wang, “An advanced mapreduce: cloud mapreduce,
enhancements and applications,” IEEE Transactions on Network and
Service Management, vol. 11, no. 1, pp. 101–115, 2014.

[25] D. Pop, “Machine learning and cloud computing: Survey of distributed
and saas solutions,” arXiv preprint arXiv:1603.08767, 2016.

[26] Alibaba cluster data. [Online]. Available: https://github.com/alibaba/
clusterdata/

[27] Google cluster data. [Online]. Available: https://github.com/google/
cluster-data/

[28] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency sensitive
cloud native applications: A performance study on aws,” in 2019 IEEE
12th International Conference on Cloud Computing (CLOUD). IEEE,
2019, pp. 272–280.

[29] S. Lenhart and D. Fox, “Participatory democracy in dynamic contexts:
A review of regional transmission organization governance in the united
states,” Energy Research & Social Science, vol. 83, p. 102345, 2022.

[30] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement, 2009,
pp. 202–208.

[31] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen et al., “Pingmesh: A large-scale system for
data center network latency measurement and analysis,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015, pp. 139–152.

[32] A. Soltanian, D. Naboulsi, R. Glitho, and H. Elbiaze, “Resource al-
location mechanism for media handling services in cloud multimedia
conferencing,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 5, pp. 1167–1181, 2019.

[33] B. Bixby, “The gurobi optimizer,” Transp. Re-search Part B, vol. 41,
no. 2, pp. 159–178, 2007.

[34] A. Agarwal, Z. Liu, and S. Seshan, “{HeteroSketch}: Coordinating
network-wide monitoring in heterogeneous and dynamic networks,” in
19th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 22), 2022, pp. 719–741.

[35] A. Krause and D. Golovin, “Submodular function maximization.”
Tractability, vol. 3, pp. 71–104, 2014.

[36] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[37] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating
the maximum of a submodular set function,” Mathematics of operations
research, vol. 3, no. 3, pp. 177–188, 1978.

[38] L. Luo, G. Zhao, H. Xu, L. Xie, and Y. Xiong, “Vita: Virtual network
topology-aware southbound message delivery in clouds,” in IEEE IN-
FOCOM 2022-IEEE Conference on Computer Communications. IEEE,
2022, pp. 630–639.

[39] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-aware
network service chain provisioning with delay guarantees in nfv-enabled
enterprise datacenter networks,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 554–568, 2017.

[40] W. Lin, H. Wang, Y. Zhang, D. Qi, J. Z. Wang, and V. Chang, “A cloud
server energy consumption measurement system for heterogeneous cloud
environments,” Information Sciences, vol. 468, pp. 47–62, 2018.

